mean
- paddle. mean ( x: Tensor, axis: int | Sequence[int] | None = None, keepdim: bool = False, name: str | None = None, *, dtype: DTypeLike | None = None, out: Tensor | None = None ) Tensor [source]
-
Computes the mean of the input tensor’s elements along
axis.- Parameters
-
x (Tensor) – The input Tensor with data type bool, bfloat16, float16, float32, float64, int32, int64, complex64, complex128. alias:
inputaxis (int|list|tuple|None, optional) – The axis along which to perform mean calculations.
axisshould be int, list(int) or tuple(int). Ifaxisis a list/tuple of dimension(s), mean is calculated along all element(s) ofaxis.axisor element(s) ofaxisshould be in range [-D, D), where D is the dimensions ofx. Ifaxisor element(s) ofaxisis less than 0, it works the same way as \(axis + D\) . Ifaxisis None, mean is calculated over all elements ofx. Default is None. alias:dimkeepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdimis True, the dimensions of the output Tensor is the same asxexcept in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis. Default is False.name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name.
dtype (str) – The desired data type of returned tensor. Default: None.
out (Tensor|None, optional) – The output tensor. Default: None.
- Returns
-
Tensor, results of average along
axisofx, with the same data type asx.
Examples
>>> import paddle >>> x = paddle.to_tensor([[[1., 2., 3., 4.], ... [5., 6., 7., 8.], ... [9., 10., 11., 12.]], ... [[13., 14., 15., 16.], ... [17., 18., 19., 20.], ... [21., 22., 23., 24.]]]) >>> out1 = paddle.mean(x) >>> print(out1.numpy()) 12.5 >>> out2 = paddle.mean(x, axis=-1) >>> print(out2.numpy()) [[ 2.5 6.5 10.5] [14.5 18.5 22.5]] >>> out3 = paddle.mean(x, axis=-1, keepdim=True) >>> print(out3.numpy()) [[[ 2.5] [ 6.5] [10.5]] [[14.5] [18.5] [22.5]]] >>> out4 = paddle.mean(x, axis=[0, 2]) >>> print(out4.numpy()) [ 8.5 12.5 16.5] >>> out5 = paddle.mean(x, dtype='float64') >>> out5 Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True, 12.50000000)
