pow
- paddle. pow ( x: Tensor, y: float | Tensor, name: str | None = None, *, out: Tensor | None = None ) Tensor [source]
-
Compute the power of Tensor elements. The equation is:
\[out = x^{y}\]Note
paddle.pow
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .Note
Alias Support: The parameter name
input
can be used as an alias forx
, The parameter nameexponent
can be used as an alias fory
. For example,pow(input=2, exponent=1.1)
is equivalent topow(x=2, y=1.1)
.- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bfloat16, float16, float32, float64, int32, int64, complex64 or complex128.
input – An alias for
x
, with identical behavior.y (float|int|Tensor) – If it is an N-D Tensor, its data type should be the same as x.
exponent – An alias for
y
, with identical behavior.name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name.
out (Tensor, optional) – The output tensor. If set, the result will be stored in this tensor. Default is None.
- Returns
-
N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as x.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> # example 1: y is a float or int >>> res = paddle.pow(x, 2) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 4., 9.]) >>> res = paddle.pow(x, 2.5) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , 5.65685415 , 15.58845711]) >>> # example 2: y is a Tensor >>> y = paddle.to_tensor([2], dtype='float32') >>> res = paddle.pow(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 4., 9.])