L1Loss
- class paddle.nn. L1Loss ( reduction: _ReduceMode = 'mean', name: str | None = None ) [source]
-
Construct a callable object of the
L1Lossclass. The L1Loss layer calculates the L1 Loss ofinputandlabelas follows.If reduction set to
'none', the loss is:\[Out = \lvert input - label\rvert\]If reduction set to
'mean', the loss is:\[Out = MEAN(\lvert input - label\rvert)\]If reduction set to
'sum', the loss is:\[Out = SUM(\lvert input - label\rvert)\]- Parameters
-
reduction (str, optional) – Indicate the reduction to apply to the loss, the candidates are
'none'|'mean'|'sum'. If reduction is'none', the unreduced loss is returned; If reduction is'mean', the reduced mean loss is returned. If reduction is'sum', the reduced sum loss is returned. Default is'mean'.name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name.
- Shape:
-
input (Tensor): The input tensor. The shapes is
[N, *], where N is batch size and * means any number of additional dimensions. It’s data type should be float32, float64, int32, int64.label (Tensor): label. The shapes is
[N, *], same shape asinput. It’s data type should be float32, float64, int32, int64.output (Tensor): The L1 Loss of
inputandlabel. If reduction is'none', the shape of output loss is[N, *], the same asinput. If reduction is'mean'or'sum', the shape of output loss is [].
Examples
>>> import paddle >>> input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]]) >>> label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]]) >>> l1_loss = paddle.nn.L1Loss() >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.34999999) >>> l1_loss = paddle.nn.L1Loss(reduction='sum') >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.39999998) >>> l1_loss = paddle.nn.L1Loss(reduction='none') >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.20000005, 0.19999999], [0.20000000, 0.79999995]])
-
forward
(
input: Tensor,
label: Tensor
)
Tensor
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
