ones_like
- paddle. ones_like ( x: paddle.Tensor, dtype: DTypeLike | None = None, name: str | None = None, *, device: PlaceLike | None = None, requires_grad: bool = False, pin_memory: bool = False ) paddle.Tensor [source]
-
Returns a Tensor filled with the value 1, with the same shape and data type (use
dtype
ifdtype
is not None) asx
.Note
Alias Support: The parameter name
input
can be used as an alias forx
. For example,ones_like(input=tensor_x, ...)
is equivalent toones_like(x=tensor_x, ...)
.- Parameters
-
x (Tensor) – The input tensor which specifies shape and dtype. The dtype of
x
can be bool, float16, float32, float64, int32, int64. alias:input
.dtype (str|np.dtype, optional) – The data type of the output tensor. Supported data types: bool, float16, float32, float64, int32, int64. If
dtype
is None, the data type is the same asx
. Default is None.name (str|None, optional) – For details, please refer to api_guide_Name. Generally, no setting is required. Default: None.
device (PlaceLike|None, optional) – The desired device of returned tensor. if None, uses the current device for the default tensor type (see paddle.device.set_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None.
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.
pin_memory (bool, optional) – If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False
- Returns
-
A Tensor filled with the value 1, with the same shape and data type (use
dtype
ifdtype
is not None) asx
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1,2,3]) >>> out1 = paddle.ones_like(x) >>> print(out1.numpy()) [1 1 1] >>> out2 = paddle.ones_like(x, dtype='int32') >>> print(out2.numpy()) [1 1 1]