zeros
- paddle. zeros ( shape: ShapeLike, dtype: DTypeLike | None = None, name: str | None = None, *, out: paddle.Tensor | None = None, device: PlaceLike | None = None, requires_grad: bool = False, pin_memory: bool = False ) paddle.Tensor [source]
-
Creates a tensor of specified
shape
anddtype
, and fills it with 0.Note
Alias Support: The parameter name
size
can be used as an alias forshape
.shape
can be a variable number of arguments. For example:paddle.ones(1, 2, 3, dtype=paddle.float32)
paddle.ones(size=[1, 2, 3], dtype=paddle.float32)
- Parameters
-
shape (tuple|list|Tensor|variable number of arguments) – Shape of the Tensor to be created. The data type is
int32
orint64
. alias:size
. Ifshape
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor which represents a list.shape
can be a variable number of arguments.dtype (np.dtype|str, optional) – Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. Default: if None, the data type is float32. property. For more information, please refer to api_guide_Name.
out (Tensor, optional) – The output tensor.
device (PlaceLike|None, optional) – The desired device of returned tensor. if None, uses the current device for the default tensor type (see paddle.device.set_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None.
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.
name (str|None, optional) – The default value is None. Normally there is no need for user to set this
pin_memory (bool, optional) – If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False
- Returns
-
A tensor of data type
dtype
with shapeshape
and all elements set to 0. - Return type
-
Tensor
Examples
>>> import paddle >>> # shape is a list/tuple >>> data1 = paddle.zeros(shape=[3, 2]) >>> print(data1.numpy()) [[0. 0.] [0. 0.] [0. 0.]] >>> # shape is a Tensor >>> shape = paddle.to_tensor([3, 2]) >>> data2 = paddle.zeros(shape=shape) >>> print(data2.numpy()) [[0. 0.] [0. 0.] [0. 0.]] >>> # shape is a Tensor List >>> shape = [paddle.to_tensor(3), paddle.to_tensor(2)] >>> data3 = paddle.zeros(shape=shape) >>> print(data3.numpy()) [[0. 0.] [0. 0.] [0. 0.]]